Microbiological Hydroxylation. Part XX.¹ Hydroxylation of Dioxygenated 5α -Androstanes with the Fungi *Absidia regnieri* and *Syncephelastrum* racemosum

By Alan M. Bell, Sir Ewart R. H. Jones, G. Denis Meakins,* John O. Miners, and Alistair L. Wilkins, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

Dioxygenated androstanes are readily hydroxylated by the title fungi. Although complex mixtures are generally formed, 3β -hydroxy- 5α -androstan-7-one is converted efficiently into its 12α -hydroxy-derivative (51% yield) by *S. racemosum*. The poor steroid recoveries of incubations involving 3,17-dioxygenated substrates and *A. regnieri* are improved by using a medium containing cobalt(II) sulphate: under such conditions 3β -hydroxy- 5α -androstan-17-one in 49% yield.

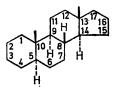
ONLY progesterone and its derivatives appear to have been used as substrates in previous work² on steroid hydroxylation with the fungi *Absidia regnieri* and *Syncephelastrum racemosum*. Progesterone was transformed into a range of products by both fungi, viz.

¹ Part XIX, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, J. Pragnell, and A. L. Wilkins, *J.C.S. Perkin I*, 1975, 1552.

1552.
² W. Charney and H. L. Herzog, 'Microbial Transformations of Steroids,' Academic Press, New York, 1967.

³ M. Shirasaka, M. Ozaki, and S. Sugawara, J. Gen. Appl. Microbiol. (Tokyo), 1961, 7, 341.

Substrate


14 α - and 15 β -mono-, 6β , 14 α - and 7 β , 14 α -di-, and 7 β , 14 α , 15 β -tri-hydroxylated derivatives with *A. regnieri*, ³ and 15 β -mono- and 6β , 11 α -, 6β , 15 β -, 7β , 14 α -, and 7β , 15 β -di-hydroxylated derivatives with *S. racemosum*.⁴ Incubations ^{5,6} of 17 α -hydroxyprogesterone and cortexolone

⁴ Y. Sato, T. Tanaka, and K. Tsuda, *Chem. and Pharm. Bull.* (*Japan*), 1963, **11**, 1579; K. Tsuda, T. Asai, Y. Sato, T. Tanaka, and M. Kato, *J. Gen. Appl. Microbiol.* (*Tokyo*), 1959, **5**, 1.

⁵ M. Shirasaka, Chem. and Pharm. Bull (Japan), 1961, 9, 59.
⁶ K. Tsuda, T. Asai, E. Ohki, A. Tanaka, and M. Hattori, Chem. and Pharm. Bull. (Japan), 1958, 6, 387.

TABLE 1

Hydroxylations with Absidia regnieri (Ar) and Syncephelastrum racemosum (Sr)

5α -Androstane

The substrates, all derivatives of 5α -androstane, are indicated by abbreviated names, e.g. 3β -OH-17-CO represents 3β -hydroxy- 5α -androstan-17-one. In the 'products' columns those oxygen functions introduced during the incubation are in **bold type**. The substrates were introduced as solutions in ethanol and incubated for the times (usually 4 days) specified in the Experimental section. The yields are calculated after making allowance for recovered starting material.

		Substrate							
Substrate	Fungus	recovered	Main hydroxylation product(s)			Other pr	oducts	%	
3-CO	Ar	55%		15 β-	(OH),	8%	9 α-	OH	4
3,7-(CO) ₂	Ar	0 /0	3β,	11 α-	$(OH)_2^2$	6		-CO	3
·;· (··/2			- F)		(==-/2	•	- 11α-	OH	ĭ
	Sr	3	3β,	12 α-	(OH) ₂	13	3β, 12 β-	(OH) ₂	
	2.		0,00		(0/2		7α,9α-	$(OH)_{2}^{2}$	5
							1β-	OH'	3
							11α-	ŎĤ	6 5 3 2 2 2
							12α -	ŎĤ	2
							7a, 9 a, 11 a-	(OH)3	2
9α-OH-3-CO	Ar	82	None isolated	1			,	(011/3	-
	Sr	10	3β,	12α-	$(OH)_2$	12			
3,11-(CO) ₂	Ar	0	$\Delta^{1,4}$	17	β- OH	$12 \\ 6$	Δ1,4_ 16	β- OH	4
0,11-(00)2	217	v		11	p- 011	v		-co	2
								-CO	2
	Sr		Δ ^{1, 4} -	16	β- OH	18	$\Delta^{1, 4}$ 17		4 2 2 9 9
	57			10	p- 011	10		-co	ğ
11a-OH3-CO	Ar	49	None isolated	1				00	v
114-011-9-00	Sr	$\frac{10}{25}$	3β, 7 β-		(OH) ₂	27	7 β-	OH	17
	57	20	op, p		$(011)_{2}$	2.	38-	OH	4
12α-OH–C-CO	Ar	53					3β- 3β- 3β-	OH	10
124-011-0-00	Sr.	65					36-	ŎĤ	6
3,17-(CO) ₂	Ar	0	9 α-		OH	14	7α-	OH	10
0,11-(00)2	217	0	7a,9a-		$(OH)_2$	13	3β, 9α-	(OH),	5
	Ar *	0	Δ1,4- 110	~_	OH ²	16	3β, 9α- 3β, 11α- Δ ⁴ - 11α-	$(OH)_2$	11
	217	0	110		OH	14	Δ^4 - 11 α -	OH ²	9
				L -	011	14	9α-	ŎĦ	8
							3β, 9 α-	(OH)2	7
	Sr	0	3β, 7α-		(OH) ₂	7	3β-	OH 2	. 7
	0,	0	ob' w		(011/2	•	$3\beta, 7\alpha, 17($		
							3β, 7α, 17(3β, 9α-	$(OH)_2$	$3 \\ 2$
							0p, 3u	(011/2	4

TABLE 1 (Continued)								
Substrate	Fungus	Substrate recovered	Main hydroxylation product(s)			Other products %		
17β-OH-3-CO	Ar	5	9α-	о́н	14	$7\alpha, 9\alpha-(OH)_2-17-CO$ 7		
	Ar *	13	9 α-	OH	30	$\begin{array}{ccc} 9\alpha, & 14\alpha & (\mathrm{OH})_2 & 2\\ 3\beta, & 9\alpha & (\mathrm{OH})_2 & 8\\ 9\alpha & (\mathrm{OH})_2 & 8 \end{array}$		
	Sr	0	3β, 7α-	(OH) ₂	27	$\begin{array}{cccc} 9\alpha, & 14\alpha & (OH)_2 & 2\\ 3\beta, & 9\alpha & (OH)_2 & 8\\ 9\alpha & OH-17 & CO & 2\\ 7\beta & OH & 9\\ 9\alpha & OH & 7\\ \end{array}$		
178-OH-6-CO	Sr	19	11 α-OH–17-CO 23			3β, 7α -(OH) ₂ 17-CO 4		
3β-OH-7-CO	37 A 7	19 5	9a-	OH	23	14 α- ΟΗ 9		
op			-			11α - OH 5		
	Sr	0	12 <i>α</i> -	OH	51	9α- ΟΗ 9 12β- ΟΗ 8		
3β-OAc7-CO-Δ ⁵	Ar	0	3β, 9 α-	$(OH)_2$	21	120-011 0		
op 0000 1 00 00			3β, 14 α	- (OH).	19			
	Sr	0	$3\beta, 12\alpha$ -	(OH) ²	14			
7,17-(CO) ₂	Ar	33	3β, 12 β- 5α-	$_{\rm OH)_2}^{\rm (OH)_2}$	14 6			
$7,17-(00)_2$	Sr	4	1 α,	17β-(OH) ₂	23	11 α , 17 β - (OH) ₂ 11		
				,2		12 β, 17β- (OH) ₂ 7 5 α, 17β- (OH) ₂ 4 11 α- OH 3		
17β-OH-7-CO	Ar	18	3 β-	OH	24	3β-OH- 17-CO 6		
	Sr	0	3 β, 12 β-	(OH) ₂	23	3 β- OH 17		
						12β- ΟΗ 11 1β- ΟΗ 7		
11,17-(CO) ₂	Ar	34				17β- OH 28		
11,11 (00)2	Sr	37	7α,	17β -(OH) ₂	27	5α , 17β - (OH) ₂ 9		
		20				7α- OH 5		
17β-OH–11-CO	Ar Sr	$\begin{array}{c} 63 \\ 22 \end{array}$				17-CO 25 17-CO 15		
3β-OH-17-CO	Ar	4	9 α-	OH	19	7 β- OH 12		
	A 🗯	0	9 α-	OH	49	7α , 14α - $(OH)_2$ 4 9α , 14α - $(OH)_2$ 2 7β - OH 9		
	Ar * Sr	0 0	9α- 7β-	OH	49 27	7 -CO 10		
	0,	Ŭ	7 6,	17β-(OH),	24	4		
3β-OH-17,17 ^{-O}	Ar	Q	9 α-OH-17-	-CO	14	$7\alpha, 9\alpha-(OH)_2-17-CO$ 4		
3β-OH−17-CO−Δ⁵	A ~	0	7a, 11a-	(OH) ₂	39	12 , 14 α -(OH) ₂ -17-CO 4		
əp-0π-17-00-Δ°	Ar	v	7a, 11a- 7a-	OH OH	39 21			
	Sr	0	7 β̃-	ŎĦ	$\overline{17}$	7 α- OH 11		
		10		(077)		7- CO 5		
3β -OAc-7,17- (CO) ₂ - Δ^5	Ar Sr	16 0	3β, 9 α- Not investigated	(OH) ₂	37	3β, 14 α- (OH) ₂ 10		

* Incubation carried out in the presence of cobalt(11) sulphate.

 $(17\alpha, 21$ -dihydroxypregn-4-ene-3,20-dione) also gave mixtures, but with these substrates 11α -hydroxylation was the main microbiological process. In continuing our work, which is concerned mainly with the hydroxylation of androstane derivatives, both fungi were screened for activity towards mono- and di-oxygenated androstanes. Although hydroxylation of the mono-oxygenated substrates was inconveniently slow, the dioxygenated androstanes were metabolised readily, and a selection of them was used in the detailed study reported here.

A summary of the microbiological results is given in Table 1. The n.m.r. spectra of the steroids, substrates and products, involved here for which spectroscopic data have not appeared in earlier publications are listed in Table 2: the arabic serial number sequence of steroids dicussed earlier ⁷ is used in this Table, which contains steroids nos. 874-917. A combination of spectrometric and chemical methods was used in establishing the structures of new compounds; their n.m.r. signals appear in Table 2 and the other information required for their characterisation is given in Table 3. Since the

[†] For details of Supplementary Publications see Notice to Authors No. 7, J.C.S. Perkin I, 1974, Index issue. work involves only routine procedures fully described in earlier Parts the experimental details have beendeposited as Supplementary Publication No. SUP 21462 (14 pp., 1 microfiche).[†]

In general A. regnieri and S. racemosum give complex mixtures and are therefore less useful than the fungi investigated previously⁸ for preparing oxygenated androstanes of the less common types. [The one notable exception is the efficient 12 α -hydroxylation (51% yield) of 3 β -hydroxy-5 α -androstan-7-one with S. racemosum.] However, although most of the products were obtained in rather low yield they include compounds, e.g. 1 α , 17 β dihydroxy-5 α -androstan-7-one (22%), which would be difficult to obtain by purely chemical methods. Both micro-organisms appear to be short-range hydroxylators, but it is difficult to discern any clear relationship between the positions of the substrates' oxygenated groups and the patterns of hydroxylation.

⁷ A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, *J.C.S. Perkin I*, 1972, 2081.

⁸ A. M. Bell, V. E. M. Chambers, Sir Ewart R. H. Jones, G. D. Meakins, W. E. Müller, and J. Pragnell, *J.C.S. Perkin I*, 1974, 312.

TABLE 2 N.m.r. signals

The results, presented in the used earlier, a were obtained by examining solutions in CDCl_3 at 100 MHz

in CDCl ₃ at 100 MHz								
No.	Compound		72	τ₂(calc			d other signals	
874	Androsta-3,5,8(9)-triene- 7,17-dione	19	8.64	8.65	H-3) H-4 ∫	3.78	m (5)	
	1,11 dione	18	9.14	9.14	H-6	4.02	s	
875	5α-Androst-1-ene-	19	8.70	8.69	H-1	2.89	d (10)	
876	3,7,17-trione 5α-Androstane-3,7,12,17-	$\frac{18}{19}$	9.09 8.62	$9.02 \\ 8.59$	H-2	4.05	d (10)	
	tetraone	18	8.76	8.74				
877	12β -Hydroxy- 5α -	19	8.98	8.96	H-12	6.62	4 (11, 5)	
878	androstan-3-one 1β-Hydroxy-5α-	$\frac{18}{19}$	$9.27 \\ 8.68$	$9.25 \\ 8.65$	H-1	6.17	4 (10, 6)	
	androstane-3,7-dione	18	9.28	9.26		0.11	1 (10, 0)	
879	5-Hydroxy-5a-	19	8.83	8.83				
880	androstane-7,17-dione 9a-Hydroxy-5a-	$\frac{18}{19}$	9.14 8.60	$9.14 \\ 8.57$				
	androstane-3,7-dione	18	9.26	9.23				
881	9α-Hydroxy-5α- androstane-3,15-dione	$\frac{19}{18}$	$8.86 \\ 9.15$	$8.84 \\ 9.16$				
882	11a-Hydroxy-5a-	19	9.13	9.13	H-11	5.95	7 (10, 10, 5, 5)	
	androstane-6,17-dione	18	9.10	9.09				
883	12α-Hydroxy-5α- androstane-3,7-dione	$\frac{19}{18}$	$8.72 \\ 9.24$	$8.69 \\ 9.21$	H-12	6.15	m (5)	
884	14α-Hydroxy-5α-	19	8.72	8.70				
005	androstane-3,7-dione	18	9.12	9.14			(7.0)	
885	1α,17β-Dihydroxy-5α- androstan-7-one	$\frac{19}{18}$	$8.91 \\ 9.28$	$8.93 \\ 9.27$	H-1 H-17	6.60 6.37	m (18) t (8)	
886	1β,17β-Dihydroxy-5α-	19	8.92	8.89	H-1	6.36	4 (12, 5)	
997	androstan-7-one	18	9.27	9.27	H-17	6.36	t (8)	
887	3β,7α-Diacetoxy-5α- androstan-17-one	19 18	$9.15 \\ 9.12$	$9.13 \\ 9.10$	H-3 H-7	$5.26 \\ 4.93$	7 (10, 10, 5, 5) m (7)	
388	3β,7α-Dihydroxyandrost-	19	8.97	8.94	H-3	6.41	m (23)	
	5-en-17-one	18	9.11	0.10	H-6 H-7	4.34	d (s)	
889	3β,7β-Dihydroxyandrost-	19	9.11 8,92	$9.10 \\ 8.95$	H-3	6.01 6.40	m (11) m (24)	
	5-en-17-one				H-6	4.65	s	
890	38 9m Dibudrovu 3m	$\frac{18}{19}$	$9.10 \\ 8.80$	9.12	H-7 H-3	6.02	m (16)	
890	3β,9α-Dihydroxy-3α- androstan-7-one	18	9.29	$8.78 \\ 9.26$	п-э	6.38	m (25)	
891	9α-Hydroxy-7-oxo-5α-	19	8.77	8.78	H-3	5.52	7 (10, 10, 5, 5)	
892	androstan- 3β -yl acetate 3β , 9α -Dihydroxyandrost-	$\frac{18}{19}$	$9.28 \\ 8.66$	$9.25 \\ 8.65$	H-3	6.34	(19)	
002	5-en-7-one	18	9.28	9.28	H-6	4.25	m (18) s	
893	9a-Hydroxy-17-oxo-5a-	19	9.02	9.02	H-3	5.32	m (22)	
894	androstan-3 β -yl acetate 3 β ,12 α -Dihydroxy-5 α -	$\frac{18}{19}$	$9.12 \\ 8.93$	$9.09 \\ 8.92$	H-3	6.41	m (23)	
	androstan-7-one	18	9.26	9.24	H-12	6.22	m (23) m (7)	
895	3β , 12α -Dihydroxyandrost-	19	8.80	8.77	H-3	6.34	m (17)	
	5-en-7-one	18	9.24	9.26	H-6 H-12	$\frac{4.28}{6.16}$	s m (6)	
896	3β,14α-Dihydroxy-5α-	19	8.92	8.91	H-3	6.39	7 (10, 10, 5, 5)	
807	androstan-7-one	18	9.20	9.17	77.0			
897	3β,14α-Dihydroxyandrost- 5-en-7-one	$19 \\ 18$	$\frac{8.78}{9.17}$	$8.78 \\ 9.19$	H-3 H-6	$6.33 \\ 4.27$	m (17)	
898	5,17β-Dihydroxy-5α-	19	8.85	8.85	H-17	6.33	t (7)	
800	androstan-7-one	18	9.27	9.29	11.17	0.15		
89 9	5,17β-Dihydroxy-5α- androstan-11-one	$\frac{19}{18}$	$\frac{8.82}{9.31}$	$8.82 \\ 9.31$	H-17	6.15	t (8)	
9 00	7α,9α-Dihydroxy-5α-	19	8.91	8.88	H-7	5.89	m (7)	
901	androstan-3-one 7β,11α-Dihydroxy-5α-	$\frac{18}{19}$	9.29	9.29	H-7	6 56	7 (10 10 5 5)	
301	androstan-3-one	18	$8.82 \\ 9.21$	$8.83 \\ 9.21$	H-7 H-11	$6.56 \\ 5.98$	7 (10, 10, 5, 5) 7 (10, 10, 5, 5)	
902	7β,17β-Diacetoxy-5α-	19	8.93	8.91	$_{\text{H-17}}^{\text{H-7}}$	5.4	m (24)	
9 03	androstan-3-one 9α,15β-Dihydroxy-5α-	$\frac{18}{19}$	$9.15 \\ 8.83$	$9.16 \\ 8.83$	H-17 5 H-15	5.73		
000	androstan-3-one	18	8.95	8.96	11-10	0.10	t (7)	
9 0 4	12β,17β-Dihydroxy-5α-	19	8.93	8.90	H-12	6.57	4 (10, 5)	
905	androstan-7-one 3β,9α-Dihydroxyandrost-	$\frac{18}{19}$	9.20 8.63	$9.17 \\ 8.63$	H-17 H-3	$6.12 \\ 6.31$	t(7)	
500	5-ene-7,17-dione	18	9.11	9.11	H-6	4.28	m (20) s	
9 06	3β , 14α -Dihydroxyandrost-	19	8.76	8.76	H-3	6.30	m (17)	
907	5-ene-7,17-dione 7α,9α-Dihydroxy-5α-	$\frac{18}{19}$	$9.01 \\ 8.86$	9.00 8.86	H-6 H-7	$4.29 \\ 5.96$	s m (6)	
	androstane-3,17-dione	18	9.11	9.12				
908	5α -Androstane- 3β , 7β , 11α -	19	9.04	9.02	H-3	6.5	m (22)	
	triol	18	9.24	9.26	H-11	6.35 6.06	m(20) m(20)	
90 9	5α -Androstane- 3β , 9α , 12α -	19	9.08	9.05	H-3	6.34	m (20) m (20) m (25) m (6)	
91 0	triol 7α,9α-Dihydroxy-17-oxo-	$\frac{18}{19}$	$9.24 \\ 9.05$	$9.22 \\ 9.05$	H-12 H-3	$6.08 \\ 5.32$	m (6) 7 (10, 10, 5, 5)	
310	5α-androstan-3β-yl	18	9.15	9.14	H-7	6.05	m (8)	
	acetate							
911	3β,7α,11α-Trihydroxyan- drost-5-en-17-one *	19	8.94		H-3 H-6	$6.56 \\ 4.47$	m (20) d (6)	
		18	9.20		H-7	6.20	m(12)	
010	20.5. Disastan 14.	10	0.10	0.10	H-11	6.08	m (24)	
912	3β,7α-Diacetoxy-14α- hydroxy-5α-androstan-	$\frac{19}{18}$	$9.16 \\ 8.97$	$9.13 \\ 8.98$	H-3 H-7	5.08 4.84	7 (11, 11, 5, 5) m (7)	
	17-one							
913	9a,14a-Dihydroxy-17-oxo-	19	9.03	9.02	H-3	5.34	7 (10, 10, 5, 5)	
	5α-androstan-3β-yl- acetate	18	9,00	8.97				
914	3β,12β,14α-Trihydroxy-	19	9.13	9.16	H-3	6.44	7 (11, 11, 5, 5)	
915	5α-androstan-17-one 3β,12β,17β-Trihydroxy-	$\frac{18}{19}$	8.96 8.90	8.93 8.89	H-12 H-3	5.92 6.40	4 (11, 6)	
010	5a-androstan-7-one			0.00	H-3 H-12	6.66	m (25) 4 (11, 5)	
916		18	9.22	9.24	H-17	6.13	t (8)	
A 10	7α,9α,11α-Trihydroxy- 5α-androstan-3-one *	$\frac{19}{18}$	8.96 9.04		H-7 H-11	$5.88 \\ 5.13$	m (8) m (17)	
917	9α,14α-Dihydroxy-3-oxo-	19	8.86	8.83	H-17	4.73	m (11)	
	5α-androstan-17β-yl acetate	18	9.06	9.04				
	acciate a Ref. 7.		* Solut	ion in ((CD ₃) ₂ SO			

TABLE 3

Characterisation of new compounds

Characte	risation of	new c	compounds	
	M.p.	[α] D (°)	† Analytical	figures (%)
Compound	(°C) *			
Androsta-3,5,8(9)-triene-	193	(c) 190	East A	СН
7,17-dione	195	(0.2)	Found	80.5 7.9 80.8 7.85
5α-Androst-1-ene-3,7,17-	223 - 224	+56	C ₁₉ H ₂₂ O ₂ req. Found	80.8 7.85 75.9 8.1
trione		(0.2)	C.H.O. reg	76.0 8.05
5α-Androstane-3,7,12,17-	282 - 285	+133	C₁9H₂6O3 req. Found	72.3 7.7
tetraone		(0.1)	C ₁₉ H ₂₄ O ₆ req. Found	72.1 7.65
1β-Hydroxy-5α-androstane-	181 - 182	-30	Found	75.2 8.9
3,7-dione 5-Hydroxy-5α-androstane-	221 - 222	(0.25)	C ₁₉ H ₂₈ O ₃ req. Found	75.0 9.3
7,17-dione	221	+42 (0.25)	C ₁₉ H ₂₈ O ₃ req.	75.0 9.2
9a-Hydroxy-5a-androstane-	263 - 265	-68	Found	75.0 9.3 75.3 9.3
3,7-dione		(0.2)	C, H. O, reg.	75.0 9.3
9a-Hydroxy-5a-androstane-	181 - 183	+36	C ₁₉ H ₂₈ O ₃ req. Found	74.9 9.2
3,15-dione		(1.0)	C ₁₉ H ₂₈ O ₃ req. Found	75.0 9.3
11α-Hydroxy-5α-androstane-	180 - 182	-+-45	Found	74.8 9.3
6,17-dione	940 949	(0.7)	C ₁₉ H ₂₈ O ₃ req. Found	75.0 9.3
12α-Hydroxy-5α-androstane- 3,7-dione	240 - 243	-19 (0.35)		74.7 9.2
14α-Hydroxy-5α-androstane-	180-182	+29	C ₁₉ H ₂₈ O ₃ req. Found	75.0 9.3 74.8 9.0
a.7-dione	100 101	(0.2)	Carlanda reg	75.0 9.3
$1\alpha, 17\beta$ -Dihydroxy- 5α - androstan-7-one	197 - 199	-74	C ₁₉ H ₂₈ O ₃ req. Found	74.6 9.7
androstan-7-one		(1.0)	C ₁₉ H ₃₀ O ₃ req.	74.5 9.9
1β,1/B-Dinydroxy-θα-	200 - 202	-82	Found	74.5 9.9
androstan-7-one	100 105	(0.1)	C ₁₉ H ₃₉ O ₃ req. Found	74-5 9.9
3β,7α-Diacetoxy-5α- androstan-17-one	183 - 185	+33 (0.5)	Found	70.65 8.9
3β,9α-Dihydroxy-5α-	226-227	(0.5) 80	C ₂₃ H ₃₄ O ₅ req. Found	70.75 8.8
androstan-7-one	220-221	(0.85)	C.H.O. reg	74.7 9.7 74.5 9.9
androstan-7-one 9α-Hydroxy-7-oxo-5α-	169-170	-75	C ₁₉ H ₃₀ O ₃ req. Found	72.3 9.1
androstan-3 β -yl acetate		(0.3)	C ₂₁ H ₂₂ I ₄ req.	72.4 9.25
$3\beta_{,9\alpha}$ -Dihydroxyandrost-	201 - 203	-115	$C_{21}H_{32}I_4$ req. Found	74.6 9.3
5-en-7-one		(1.05)	C ₁₉ H ₂₈ O ₃ req. Found	75.0 9.3
9α -Hydroxy-17-oxo- 5α - androstan- 3β -yl acetate	177 - 179	+53	Found	72.4 9.1
$3\beta_{12\alpha}$ -Dihydroxy- 5α -	<u></u>	(0.5) - 32	C ₂₁ H ₂₂ O ₄ req. Found	72.4 9.25
androstan-7-one	230 - 232	(1.0)	Found	74.2 9.7
3β , 12α -Dihydroxyandrost-	206-209	-107	C ₁₉ H ₃₀ O ₃ req. Found	$\begin{array}{rrrr} 74.5 & 9.9 \\ 74.9 & 9.15 \end{array}$
5-en-7-one	200 200	(0.2)	C.H.O. reg	$\begin{array}{rrr} 74.9 & 9.15 \\ 75.0 & 9.3 \end{array}$
3β,14α-Dihydroxy-5α-	204 - 205	+32	C ₁₉ H ₂₈ O ₃ req. Found	74.65 9.8
androstan-7-one		(0.1)	C ₁₉ H ₃₀ O ₃ req. Found	74.5 9.9
3β , 14α -Dihydroxyandrost-	218 - 219	-108	Found	74.7 9.2
5-en-7-one 5,17β-Dihydroxy-5α-	155 150	(0.7)	C ₁₉ H ₂₈ O ₃ req.	75.0 9.3
androstan-7-one	155 - 156	-33	Found	74.6 10.0
5,17β-Dihydroxy-5α-	211 - 213	(0.25) - 7	C ₁₉ H ₃₉ O ₃ req. Found	74.5 9.9
androstan-11-one	211-213	(0.4)		$\begin{array}{ccc} 74.5 & 9.7 \\ 74.5 & 9.9 \end{array}$
7a,9a-Dihydroxy-5a-	243 - 245	-68	C ₁₉ H ₃₀ O ₃ req. Found	74.5 9.9
androstan-3-one		(0.1)	C ₁₉ H ₃₀ O ₃ req. Found	74.5 9.9
7β,11α-Dihydroxy-5α	221 - 223	+16	Found	74.6 9.8
androstan-3-one	100 100	(0.15)	$C_{19}H_{30}O_3$ req. Found	74.5 9.9
7β , 17β -Diacetoxy- 5α -	180 - 182	+53	Found	70.95 8.8
androstan-3-one 9α ,15 β -Dihydroxy-5 α -	179-180	(0.2) - 21	C ₂₃ H ₃₄ O ₅ req. Found	70.75 8.8
androstan-3-one	175-180	(0.6)		74.8 9.8 74.5 9.9
128.178-Dihydroxy-5g-	122 - 123	67	C₁9H30O3 req. Found	$\begin{array}{ccc} 74.5 & 9.9 \\ 74.5 & 10.1 \end{array}$
12β , 17β -Dihydroxy- 5α - androstan-7-one		(0.2)	CiaHaoOa reg.	74.5 9.9
 3β,θα-Dihydroxyandrost- 5-ene-7,17-dione 3β,14α-Dihydroxyandrost- 	254 - 256	-71	C ₁₉ H ₃₀ O ₃ req. Found	71.5 8.05
5-ene-7,17-dione		(0.5)	C₁₃H₂₅O₄ req. Found	71.7 8.2
3β,14α-Dihydroxyandrost-	246 - 249	69	Found	71.5 8.4
5-ene-7,17-dione	0.07 0.00	(0.2)	C ₁₉ H ₂₆ O ₄ req. Found	71.7 8.2
7α,9α-Dihydroxy-5α- androstane-3,17-dione	267 - 268	+58 (0.7)	Found	71.2 8.6
5α -Androstane- 3β , 7β , 11α -	186—188 ‡	(0.7) +9§	C ₁₉ H ₂₈ O ₃ req. Found	$\begin{array}{ccc} 71.2 & 8.8 \\ 74.1 & 10.6 \end{array}$
triol	100 100 4	(1.0)	C.H.O. reg	74.0 10.5
5α -Androstane- 3β , 9α , 12α -	283-286 1	-20 §	C ₁₉ H ₃₂ O ₃ req. Found	73.9 10.3
triol	•	(0.15)	C ₁₉ H ₃₂ O ₃ req. Found	74.0 10.5
7α,9α-Dihydroxy-17-oxo-	213 - 215	+31	Found	69.25 8.7
5α -androstan- 3β -yl acetate		(0.35)	C ₂₁ H ₃₂ O ₅ req. Found	69.2 8.85
3β , 7α , 11α -Trihydroxy-	236 - 238	-58	Found	71.0 8.6
androst-5-ene-17-one	996 990	(1.0)	$C_{19}H_{28}O_4$ req. Found	71.2 8.8
3β,7α-Diacetoxy-14α- hydroxy-5α-androstan-17-	226 - 229	$^{+53}_{(0.3)}$		$\begin{array}{rrrr} 68.2 & 8.2 \\ 67.95 & 8.4 \end{array}$
one		(0.5)	C23H34O6 req.	07.90 8.4
9a.14a-Dihydroxy-17-oxo-	228-230	+25	Found	69.25 8.8
5α -androstan- 3β -yl acetate		(0.35)	C21 H32O5 reg.	69.2 8.85
3β,12β,14α-Trihydroxy-5α-	108111	+41	C ₂₁ H ₃₂ O ₅ req. Found	70.4 9.2
androstan-17-one		(0.7)	C 19H 30O₄ req.	70.8 9.4
3β , 12β , 17β -Trihydroxy- 5α -	214 - 216	-57	Found	70.6 9.8
androstan-7-one	227-230	(0.25) 70	C ₁₉ H ₃₀ O ₄ req. Found	70.8 9.4
7α,9α,11α-Trihydroxy-5α- androstan-3-one	221-230	(0.15)		$70.7 ext{ 9.6} \\ 70.8 ext{ 9.4}$
9a.14a-Dihydroxy-3-oxo-5a-	209 - 212	+12	C₁9H30O4 req. Found	70.8 9.4 69.0 8.7
9α , 14α -Dihydroxy-3-oxo- 5α - androstan- 17β -yl acetate		(0.5)	C21H32O5 req.	69.2 8.85
• T				

*From Me₂O-hexane unless otherwise indicated [†] CHCl₃ as solvent unless otherwise indicated. [‡] From aqueous MeOH. § MeOH as solvent.

It seemed possible that the poor steroid recovery (substrate plus products) in some of the incubations might stem from initial 9α -hydroxylation, since this process is known⁹ to be important in the microbiological

⁶ C. J. Sih, S. S. Lee, Y. Y. Tsong, and K. C. Wang, *J. Biol. Chem.*, 1966, **241**, 140; D. T. Gibson, K. C. Wang, C. J. Sih, and H. Whitlock, *ibid.*, p. 551; K. Schubert, K. Bohme, and C. Horhold, *Steroids*, 1964, **4**, 581.

1975

degradation of steroids. Several incubations were therefore repeated using a medium containing cobalt(II) sulphate, a reagent which has been reported ¹⁰ to inhibit hydroxylation at tertiary positions, but only those involving *A. regnieri* and **3,17**-dioxygenated androstanes were appreciably affected. In the three such cases (Table 1) the total recoveries were improved, but other, unexpected, changes also occurred: while 17 β -hydroxy-5 α androstan-3-one and the 3 β -hydroxy-17-ketone gave much greater amounts of the 9 α -hydroxy-derivatives, the opposite behaviour was found with 5 α -androstane-**3,17**-dione, which underwent 11 α -hydroxylation and ring A dehydrogenation as the main processes. (Some analogy for the dehydrogenation is found in the conversion of androst-4-ene-3,17-dione into the $\Delta^{1,4}$ -diketone by *Mycobacterium smegmatis* in the presence of cobalt sulphate.¹⁰)

We thank Magdalen College, Oxford, for a Perkin Research studentship (to A. L. W.), the S.R.C. for a grant, and Glaxo Research Ltd. for a grant and gifts of chemicals.

[5/713 Received, 15th April, 1975]

 10 G. Wix, K. G. Buki, E. Tomorkeny, and G. Ambrus, Steroids, 1968, 11, 401.